61 SYDNEY ROAD GOULBURN—

WATER CYCLE MANAGEMENT STUDY

FOR / NDCO Goulburn

DOCUMENT NO / 23309-01 REV / 2 DATE / 15/02/2024

www.rocengineering.com.au—

CONTENTS

1	INTF	ODUCTION	1							
	1.1	EXISTING SITE	1							
	1.2	PROPOSED DEVELOPMENT	2							
2	DESI	GN OBJECTIVES	3							
	2.1	OBJECTIVES	3							
	2.2	STORMWATER QUANTITY MANAGEMENT	3							
	2.3	STORMWATER QUALITY MANAGEMENT	3							
3	STO	RMWATER QUANTITY MANAGEMENT	4							
	3.1	EXISTING SITE	4							
	3.2	PROPOSED DESIGN	4							
	3.3	ON-SITE DETENTION	4							
	3.4	DRAINS MODEL	4							
4	WATER QUALITY									
	4.1	PREDEVELOPED CATCHMENT DETAILS	6							
	4.2	POST-DEVELOPED CATCHMENT DETAILS	7							
	4.3	WATER QUALITY IMPROVEMENT DEVICES	9							
	4.4	MUSIC MODEL RESULTS	10							
	4.5	NORBE ASSESSMENT	11							
5	CON	CLUSION	15							
6	REFE	RENCES	17							
APPE	NDIX	A – SITE PLAN	18							
1.2 PROPOSED DEVELOPMENT 2 DESIGN OBJECTIVES 2.1 OBJECTIVES 2.2 STORMWATER QUANTITY MANAGEMENT 2.3 STORMWATER QUALITY MANAGEMENT 3 STORMWATER QUANTITY MANAGEMENT 3.1 EXISTING SITE 3.2 PROPOSED DESIGN 3.3 ON-SITE DETENTION 3.4 DRAINS MODEL 4 WATER QUALITY 4.1 PREDEVELOPED CATCHMENT DETAILS 4.2 POST-DEVELOPED CATCHMENT DETAILS 4.3 WATER QUALITY IMPROVEMENT DEVICES 4.4 MUSIC MODEL RESULTS 4.5 NORBE ASSESSMENT 5 CONCLUSION	19									
APPE	NDIX	C – DRAINS INPUTS	20							
APPE	4.1 PREDEVELOPED CATCHMENT DETAILS 4.2 POST-DEVELOPED CATCHMENT DETAILS 7 4.3 WATER QUALITY IMPROVEMENT DEVICES 9 4.4 MUSIC MODEL RESULTS 10 4.5 NORBE ASSESSMENT 11 CONCLUSION 15 REFERENCES 17 PENDIX A – SITE PLAN 18 PENDIX B – SITE SURVEY 19 PENDIX C – DRAINS INPUTS 20 PENDIX D – DRAINS OUTPUTS 11 12 13 14 15 16 17 18 18 18 19 19 19 19 10 11 11 12 11 12 13 14 15 15 16 17 17 18 18 18 18 18 18 18 19 19 19									
Figur	e 1 - S	ite Locality	1							
_										
_		·								

Document Control

Revision	Date	Description	Prepared	Reviewed	Approved
1	02/02/2024	For Review	LA		TMc
2	15/02/2024	Final	LA	TMc	TMc

A person using ROC Engineering Design Pty Ltd documents or data accepts the risks of:

- Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version; and
- b) Using the documents or data for any purpose not agreed to in writing by ROC.

1 INTRODUCTION

This report has been prepared for NDCO Goulburn to accompany a Development Application to Goulburn Mulwaree Council for 61 Sydney Road, Goulburn.

This report addresses the requirements of Goulburn Mulwaree Council's development control plan (DCP) 2009 including the Engineering Design Requirements P09, and the requirements by WaterNSW 'Developments in the Sydney Drinking Water Catchment' Feb 2023.

This report refers to the civil engineering plans prepared by ROC Engineering Design Pty Ltd, Reference 23309 submitted for assessment with this report.

1.1 EXISTING SITE

The existing site is approximately 6000m2 and slopes gently from south to north. The site is located within the Goulburn-Mulwaree Council Area and is zoned as 'E3 – Productivity Support'. The site is surrounded by a service station to the west and another motel to the east. An undeveloped lot abuts the site to the south.

The site currently contains a single storey 18 room motel. The motel is aged and in disrepair and appears to be mainly used by truckers. The northern section of site has a concrete forecourt that used to be used as a service station. The southern portion consists of a gravel carpark surrounded by accommodation units.

Figure 1 - Site Locality

Table 1 below summarises the relevant site hydrologic characteristics.

Table 1 - Site Characteristics

Site characteristics	Detail
Site Location	Goulburn
Drinking Water Catchment	Upper Wollondilly River subcatchment
Rainfall and PET zone	Zone 1
Total site area	6000m2
Pre-developed site gradient	3.5%
Post-developed site gradient	2.1%
Existing watercourses through site?	No
Overland flow upstream tributary area	5710m2
Existing development characteristics	Two existing commercial buildings, one with an attached motel, one stand-alone motel building and stand-alone shed.
Existing land uses and areas	Largely cleared with four large trees. Sealed access and unsealed carpark.
Proposed development Characteristics	New commercial development.

1.2 PROPOSED DEVELOPMENT

The proposed development consists of a 32 key single level motel with a gymnasium to the east of the entry driveway. The proposed site plan is provided in Appendix A.

2 DESIGN OBJECTIVES

2.1 OBJECTIVES

The stormwater management for the site has been designed with the following objectives:

- Demonstrate that 'post development' overland water flows will not exceed 'pre-development' flows in terms of:
 - Volume
 - Quality (including nutrient content)
 - o Direction
- Demonstrate that the development meets the objectives of the Goulburn DCP Common Street Plan with regards to
 - Protecting against flooding
 - Not exacerbating flood risk
 - o Ensure stormwater quality controls are applied

2.2 STORMWATER QUANTITY MANAGEMENT

The stormwater runoff from site has been designed to comply with the following criteria:

• Limit site runoff from the site to a maximum of predeveloped levels for all storm events ranging from the 20% event up to the 1% AEP event

2.3 STORMWATER QUALITY MANAGEMENT

The development has been designed to satisfy the requirements outlined in Australian Runoff Quality given below.

- Total Suspended Solids (TSS) 80% reduction in average annual load.
- Total Phosphorous (TP) 45% reduction in average annual load.
- Total Nitrogen (TN) 45% reduction in average annual load.
- Gross Pollutants (GP) 90% reduction in average annual load.

As the development lies within a Sydney Drinking Water Catchment, it has also been designed to satisfy the following criteria to achieve Neutral or Beneficial Effect (NorBE) compliance.

- "The mean annual pollutant loads for the post development case should aim for 10% less than the
 pre-development case for total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN).
 For gross pollutants (GP), the post development load only needs to be equal or less than predevelopment load."
- 2. "Pollutant concentrations for TP and TN for the post-development case must be equal or better compared to the pre-development case for between the 50th and 98th percentile over the five-year modelling period when runoff occurs."

3 STORMWATER QUANTITY MANAGEMENT

3.1 EXISTING SITE

The existing site is fully developed and slopes gently from south to north and drains to Sydney Road via piped drainage. Overland flow entering the site from the east and south and is directed around the site via a swale.

3.2 PROPOSED DESIGN

The stormwater design allows for a majority of the roof and concrete pavement to drain to a below ground OSD tank via stormwater filter cartridges and pit inserts. The gutters and stormwater lines have been sized for the 1% ARI event. The OSD then drains into the drainage system which runs along the front boundary of the development, and outlets into the rear of the existing kerb inlet pit.

The remainder of the impervious areas are drained via piped system towards Sydney Road. Pervious areas generally drain towards the respective boundaries via overland flow. The diversion of overland flow from uphill properties is maintained by formalising the existing grassed swale.

3.3 ON-SITE DETENTION

On site detention is required for the development in order to attenuate flows. This storage is proposed to be provided by an underground OSD tank.

3.4 DRAINS MODEL

The stormwater system was modelled in the runoff routing software DRAINS. The catchment layout is provided in Figure 2 with key inputs shown in Table 2. The inputs for the DRAINS model are also summarised in Appendix C.

Table 2 - DRAINS Inputs

Drains Parameters	
Model	ILSAX
Paved area depression storage (mm)	1
Supplementary area depression storage (mm)	1
Grassed area depression storage (mm)	5
Soil type	3
Storm durations analysed	5min – 12hr
Overland flow paths general	Kinematic Wave
Overland flow paths minor	Dummy links
Overland flow safe depth 1% ARI	0.3m
Overland flow safe depth 10% ARI	0.15m
Safe depth x velocity	0.4
On-grade pit blockage factor	30%
Sag pit blockage factor	50%

Figure 2 - DRAINS Schematic

The drains model was run for various design storms ranging from the 20% AEP event to the 1% AEP event. The results have been compared to the predeveloped flows for the total site and for each existing catchment as shown in Table 3. The outputs for the 5yr, 10yr and 100 yr models are shown in Appendix D.

Table 3 - Pre/Post Developed Flow

AEP	Pre-developed Peak Site Runoff (m³/s)	Post Developed Peak Site Runoff with OSD (m³/s)
20%	0.094	0.088
10%	0.151	0.140
5%	0.204	0.174
1%	0.318	0.230

4 WATER QUALITY

A MUSIC model has been developed to simulate the pollutant loads contained in the stormwater runoff from site for both the predevelopment and post developed case. Catchment areas were defined considering the drainage flow paths, reshaped site and location of existing and proposed stormwater structures and treatment measures.

4.1 PREDEVELOPED CATCHMENT DETAILS

The pre-development case was modelled in detail by subdividing the site into sub catchments based upon the surface types. Figure 3 below shows the total areas of the different surface types.

Figure 3 – Existing Surface Type Plan

Table 4 - Predevelopment EIA

	Pre-Development	t Source Nodes	
Surface type	Adopted Parameters	Total area (m2)	Effective impervious area
Roofs	Roofs	1184	1184
Paved areas	Sealed roads	2752	2752
Pervious area	Commercial	2060	103

Figure 4 below shows the predeveloped music model.

Figure 4 – Pre Development Treatment Model

4.2 POST-DEVELOPED CATCHMENT DETAILS

The post development case was modelled in detail by subdividing the site into sub catchments based upon the surface types and drainage infrastructure. Figure 5 below shows the total areas of the different surface types.

Figure 5 - Proposed Surface Type Plan

Table 5 below summarises the Catchments.

Table 5 – Post-Developed Catchments

	Post De	velopment Catch	nments		
Surface type	Adopted Parameters	Total area (m2)	Catchment A (into RW tank)	Catchment B (to OSD)	Catchment C (to street)
Roofs	Roofs	3484	563	2578	343
Pavement	Sealed roads	1142	0	1086	56
Pervious	Commercial	1211	0	415	796
Footpath	Commercial	159	0	0	159

4.3 WATER QUALITY IMPROVEMENT DEVICES

Pit Inserts

Ocean Guard pit inserts have been employed as a preliminary form of treatment for each pit in the driveway of the development.

Stormwater Filter Cartridges

Seven 690 PSORB Stormfilter cartridges have been provided within a chamber in the OSD. Table 6 below summarises the StormFilter cartridge and associated StormFilter chamber inputs.

The node layout of the treatment train is provided in Figure 6.

Table 6 - Stormfilter Cartridge and Chamber Inputs

StormFilter Cham	ber Parameters
Low flow bypass (cubic metres per sec)	0
High flow bypass (cubic metres per sec)	100L/s (Manufacturer specification)
Surface area (square metres)	3.1
Extended Detention Depth (metres)	0.77
Permanent Pool Volume (cubic metres)	0.00
Initial Volume (cubic metres)	0.00
Exfiltration Rate (mm/hr)	0.00
Evaporative Loss as % of PET	0.00
Equivalent Pipe Diameter (mm)	58
Overflow Weir Width (metres)	2.00
StormFilter Cham	ber Parameters
Low flow bypass (cubic metres per sec)	0
High flow bypass (cubic metres per sec)	0.00540

Figure 6 - Post-development Treatment Model

4.4 MUSIC MODEL RESULTS

Pollutant load estimates are provided for TSS, TP, TN and GP. The treatment train effectiveness, expressed as a percentage reduction from untreated runoff is summarised in Table 7. This table demonstrates compliance with the pollution reduction targets.

Table 7 - Proposed Treatment Performance

	Sources	Residual Load	% Reduction	Water Quality Target Reduction %
Total Suspended Solids (kg/yr)	315.0	37.4	88.1	80
Total Phosphorus (kg/yr)	0.8	0.284	64.1	45
Total Nitrogen (kg/yr)	7.2	3.91	45.3	45
Gross Pollutants (kg/yr)	100.0	7.5	92.5	90

The treatment train effectiveness results above demonstrate the pollutant reduction targets of Australian Runoff Quality, 2006 has been met by the treatment train.

4.5 NORBE ASSESSMENT

The MUSIC model was developed in accordance with WaterNSW's publication "Using MUSIC in Sydney Drinking Water Catchment".

The treatment train effectiveness, expressed as a percentage reduction from existing conditions is summarised in Table 8. This table demonstrates compliance with condition 1 for NorBE compliance.

	Predeveloped Load	Post Developed Load	% Reduction	Water Quality Target Reduction %
Total Suspended Solids (kg/yr)	444.0	37.4	91.6	10
Total Phosphorus (kg/yr)	0.9	0.284	66.7	10
Total Nitrogen (kg/yr)	5.0	3.91	22.0	10
Gross Pollutants (kg/yr)	64.3	7.5	88.3	-

Table 8 - Proposed Treatment Performance

The existing and proposed development comparison for pollutant concentration is summarised in Figures 7 and 8, the pollutant concentration for TP and TN are reduced between the 50th and 98th percentile demonstrating compliance with condition 2 for NorBE compliance.

Figure 7 - Cumulative Frequency Graph - Total Phosphorus (TP)

Figure 8 - Cumulative Frequency Graph - Total Nitrogen (TN)

5 COMMON ST PLAN

The site is subject to the site specific provisions of the Common Street plan as part Goulburn Councils DCP 2009. The plans objectives are to:

- To facilitate industrial development on Common Street.
- To ensure that new development is protected from flood risk.
- To ensure that new development does not exacerbate flood risk.
- To ensure appropriate stormwater management and water quality controls are applied.

It can be shown that that the proposed development meets the relevant flooding and water quality objectives of the Common Street plan despite having a site coverage greater than 70%.

5.1 Flood Risk to Site

The site is not affected by mainstream flooding. Figure 9 below shows the extract from the WMA Water Wollondilly and Mulwaree Rivers flood study. This shows that the site is not affected by mainstream flooding up to the PMF flood event.

Figure 9 – PMF Flood Levels

A WSUD study for the Common St Business Park was undertaken by Storm Consulting in 2003 for Goulburn City Council. The study identified drainage and vegetation constraints and undertook local flood modelling up the 1% AEP event using RAFTS. Figure 10 shows the vegetation constraints in green and overland flow/drainage constraints in grey identified in the Storm report. As can be seen from Figure 10, the site is not located near any identified overland flow channels or drainage constraints.

Due to the distance from of the site from any identified overland flow channels and an inspection of the site contours shown in Figure 11, it is assessed that the site will not be disproportionally impacted by a PMF flood event in comparison to a 1% AEP event.

Figure 10 – Common Street Drainage Constraints

Figure 11 – Storm RAFT's Catchment Plan

5.2 Flood Risk Downstream

The results from the Drains model as shown in Table 3 earlier in the report, shows that the post developed site runoff for the proposed development is significantly lower than the existing runoff. The 5yr ARI storm event is the critical event driving the OSD design. As the ARI increases the beneficial impact of the development on site runoff increases with a 25% reduction in runoff for the 100yr ARI storm event. The development will not therefore increase the flood risk due to increased runoff.

Overland flow paths have been provided within and around the development to match existing overland flow paths. The flood risk due to redirected overland flow is therefore not increased.

5.3 Stormwater Quality

The stormwater quality improvement measures undertaken result in a 92% decrease in suspended solids, a 66% decrease in Phosphorus, a 22% decrease in Nitrogen and an 88% decrease in gross pollutants from the existing site, showing a clear positive impact on water quality.

6 CONCLUSION

The stormwater management strategy proposed meets the stormwater quantity and pollution reduction targets of the approving authority. The post developed site discharge has been reduced to existing levels for each catchment. The pollution from the site has been reduced by the targets imposed and achieves the requirements outlined in the SEPP (Sydney Drinking Water Catchment) 2011 and Goulburn Mulwarree DCP and Design standards.

7 REFERENCES

- 2019 Runoff in Urban Areas, Book 9 in Australian Rainfall and Runoff A Guide to Flood Estimation, Commonwealth of Australia, © Commonwealth of Australia (Geoscience Australia), 2019.
- Australian Runoff Quality A guide to Water Sensitive Urban Design, Engineers Australia, 2006.
- Using MUSIC in Sydney Drinking Water Catchment, WaterNSW, 2023
- Development Control Plan (DCP), Goulburn Mulwaree Council, 2009
- Standards for Engineering Works, Goulburn Mulwaree Council, 201

APPENDIX A – SITE PLAN

1 FOR APPROVAL
REV DESCRIPTION

TMC RP 02.02.2024
DESIGN DRAWN CHECK DATE

LEGEND

DOWNPIPE

NOTES

- NO LES

 1. PIPES TO SEE 6100 APUC LAD AT GROUND SLOPE,
 1% IMMAMUM, CAPACITY = 8 Lis, U.N.O.
 2. INSPECTION DEFINISHS TO BE PROVIDED AS PER
 ASSISSO, 3 SECTION 7 A
 3. THE EXTERNAL PROMERS THE ALS BUILDINGS A
 ASSISSO, 3 SECTION 7 A
 3. THE EXTERNAL PROMERS OF THE ASSISSO, 3 SECTION 7 A
 4. THE EXTERNAL PROMERS OF THE ASSISSO, 3 SECTION 7 A
 4. WITERNAL STRUCTURAL SLAB LEVELS TO BE A
 MINIMUM 150mm ABOVE EXTERNAL PRINSHED
 SURFACE LEVELS. THIS MAY BE REDUCED TO SIMM
 FICH PAYED OR CONCRETE AREAS SLOPMO AWAY
 THE ASSISSORY OF THE ASSISSORY

NOT FOR CONSTRUCTION

PROPOSED MOTEL BUILDING ROOF DRAINAGE PLAN WITH ON-GRADE PARKING 61 SYDNEY ROAD GOULBURN

Ph (02) 4244 4017 P.O. Box 216 Wollongong, NSW, 2520 Email info@rocengineering.com.au ABN 70 610 3

1:200 23309 AHD C41

NOT FOR CONSTRUCTION

APPENDIX B – SITE SURVEY

APPENDIX C – DRAINS INPUTS

PIT / NODE Name		Family	Version 15 Size	Ponding	Pressure Change Coeff. Ku		Max Pond Depth (m)		Blocking Factor	x	у	Bolt-down		: Full Inflow ck Loss Hydro		Internal Width (mm)		Minor Safe ed Pond Depti (m)	
B/2 A/8 EX KIP N - BYPASS		SI	450x450 450x450 450x450	(cu.iii)	3.3 2.3 1.5	654.6		(cu.m/s) 0 0 0	0.	-66512.: -67554.!	6 685.48 2 34566.1 1 67795.2 5 71834. 2 87602.4	6 No 8 No 9	14 1 x l 15 1 x l 12 1 x l 13 223	Ku No	New New New	(IIIII)	No No No	(111)	(111)
A/2 A/3	Node Sag Sag	SI SI	450x450 450x450 600x600	32 37 13	1.5	656.25	0.2 0.2 0.2	0	0.	-55435.3 5 -40945.3 5 -22806 5 -2321.23	2 36390. 6 40612.5 1 46711.0	5 5 No 5 No 8 No	228 232 5 1 x i 6 1 x i 7 1 x i	Ku No	New New New	45	50 No 50 No 00 No	0.2 0.2 0.2	0
A/6	OnGrade OnGrade Node Node Node Node Node Node Node No		600x600 450x450 450x450	10	1.6 1.8 0.2	656.2	0.15		0	3 -3181.20 3 -35237.0 -27809.9 -5657.11 -28722.1 -6569.31 -9696.77 -58693.4 -70427.4 6461.70! 26008.2! -144770 -186340	2 61253. 6 85647.7 6 75222.9 9 21274.5 5 29223.4 1 54894.5 2 58673.5 7 71053.0 4 23620.0 4 91880.3 5 26486.9 5 73796.7 6 10128 0 100628.	9 No 7 No 1 3 6 6 4 9 6 2 9 5 3	8 1 x 1 10 1 x 1 11 1 x 1 237 246 271 279 282 293 7077027 8194667 8194680 8717438 8717455	Ku No	New New New	60	OO NO NO NO	0.15	0.
N - PRE DE' N - OSC2	Node	SI	450x450		1.5	664		0	l I	-145058	8 66539.0 3 38413.9	9 3	8717469 8194675 25510090 1 x R	No No	New				
DETENTION Name A5/OSD	654.9 656.01 656.21	Surf. Area 16 16 1		Outlet Typ Orifice	oi K	Dia(mm) 200	Centre RL 655.05	Pit Family	Pit Type		y 1 72668.8	HED 8 No	Crest RL Cres	st Lengiid	9				
	Pit or Node	Total Area (ha)	Paved Area %	Area %	Supp Area %	Time (min)	Grass Time (min)	Supp Time (min)	Paved Length (m)	Grass Length (m)	Supp Length (m)	Paved Slope(%) %	Grass Sup Slope Slop % %			Supp Rough	Lag Time or Factor	Length (m)	Gutter Slope %
C - B2 C - A8 C - BYPASS C - PRE DE\ C - RF1 C - A1		0.599	0 31 0 43.6 100 70	100 69 100 56.4 0 30		5 5 5 0 5 0 5 0 5	7 7 7 0 7 7	2 2 2 2 0 2 2 2	7	0 50	0 -	1 1.2	10	-1	0.01	0.1	-1	0 0 0 0 0 0	
C - A3 C - A4 C - A5 C - A6 C - RF2	A/3 A/4 A5/OSD A/6 N - ROOF2 N - ROOF3	0.0259 0.0139 0.0075 0.0095 0.0277	87 100 100 52 100	13 0 0 0 48 0		5 5 5 5 5 5 5	, 7 7 7 7 7	2										0 0 0 0 0	
C - RF6 C - RF7 C - RF8 C - OSC1 C - OSC 3	N - OSC3	0.0186 0.0996 0.0323 0.4537 0.0275	100 100 100 0 100	0 0 0 0 100 0		5 5 5 0 5 0 5	7 7 7 2.8 7	2	: : : :			1 -1		-1	-1		-1	0 0 0 0 0	
C - OSC2	N - PRE DE N - OSC2		0	100		0	2.88 0 0	0	-		0 -	1 -1 1 -1 1 3.9	11	-1 -1 -1	-1 -1 0.01	0.1	-1	0 0 0	
B1-B2	From B/1	To B/2 A/8	Length (m) 33.1 33.1			(%)	Type uPVC, und uPVC, und				Pipe Is 2 New 2 New	1	Chg From At C	Chg Chg (m)	RI (m)	Chg (m)	RL (m)	etc (m)	
A8-KIP RF1 - A1 A1-A2 A2-A3 A3-A4 A4-A5 A5-A6	A/8 N - ROOF1 A/1 A/2 A/3 A/4 A5/OSD	EX KIP	4.6 10 20.2 19.7 16.3 10.4 12.2	653.61 656.83 655.8 655.55 655.3 655.1 654.9	652.8 655.83 655.33 655.13 654.93 654.93	17.61 10 1.09 1.12 1.04 1.63 3.03	uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und	4 300 4 150 4 225 4 225 4 300 4 300 4 225	30 15 24 24 30 30 24	3 0.012 4 0.012 2 0.012 2 0.013 3 0.012 3 0.012 2 0.013	2 New 2 New 2 New 2 New 2 New 2 New 2 New 2 New 2 New 2 New	1 1 1 1 1 1	A/8 N - ROOF1 A/1 A/2 A/3 A/4 A5/OSD A/6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
A7-A8	A/7 N - ROOF2 N - ROOF3 N - ROOF 5 N - ROOF 6 N - ROOF8	A/8 A/2 A/3 6A/2 6A/4 7A5/OSD	34 10 10 10 10 10 10 40	654.15 656.58 656.33 656.58 656.58 656.13 657 657	653.81 655.58 655.58 655.58 655.13 656	10 10 10 10 10 10 10 10	uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und uPVC, und	225 150 150 150 150 150 150	24. 15. 15. 15. 15. 15.	2 0.012 4 0.012 4 0.013 4 0.013 4 0.013 4 0.013	2 New	1 1 1 1 1 1	A/7 N - ROOF2 N - ROOF3 N - ROOF 5 N - ROOF 6 N - ROOF 7 N - ROOF8 C/1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
DETAILS of Pipe				S Chg	Bottom Elev (m)	Height of S	Chg		Height of (m)	S etc	LINCW	1	. 4) 1	v					
CHANNEL D	DETAILS	То	Туре	Length	U/S IL (m)	D/S IL	Slope (%)	Base Widt	L.B. Slope	R.B. Slope (1:?)	e Manning n	Depth (m)	Roofed						
OVERFLOW Name		TO	Travel Time	Spill Level	Crest Length		Cross Section	Safe Depti Major Sto			Bed Slope	D/S Area Contributi	id ng	U/S IL	L D/S IL	Length (m)		

I			(min)	(m)	(m)		(m)	(m	1)	[sq.m/sec) (%)	%					
OF - B1	B/1	B/2	. 0	.3	. ,		4 m wide p	0.3	0.15	0.4	0.6	0	407	654.8	654.6	33.1
OF - B2		A/8	0	.4			4 m wide p	0.3	0.15	0.4	0.3	0	408	654.6	654.5	33.1
OF - A8	A/8	EX KIP		.1			4 m wide p	0.3	0.15	0.4	1	0	5974201	654.5	653.8	4.6
OF - POST	I EX KIP	N - POST I	0	.1			4 m wide p	0.3	0.15	0.4	17	0	7077030	652.8	652	10
	N - BYPASS			.1			4 m wide p	0.3	0.15	0.4	3	0	426	654	653.7	10
	N - PRE DE			.1			4 m wide p	0.3	0.15	0.4	10	0	8717468	666	665	10
OF - A1	A/1	A/2		.2			4 m wide p	0.3	0.15	0.4	1.24	0	409	656.5	656.25	20.2
		A/3		.2			4 m wide p	0.3	0.15	0.4	1.27	0	410	656.45	656.2	19.7
		A/4		.1			4 m wide p	0.3	0.15	0.4	1.23	0	412	656.4	656.2	16.3
	A/4	A5/OSD		.1			4 m wide p	0.3	0.15	0.4	1.44	0	413	656.35	656.2	10.4
		A/6			656.21	4	1.7 4 m wide p	0.3	0.15	0.4	0.08	0	414	656.21	656.2	12.2
	A/6	EX KIP		.4			4 m wide p	0.3	0.15	0.4	3.73	Ō	437	656.2	653.7	67
	N - OSC1			.1			4 m wide p	0.3	0.15	0.4	0.75	0	8194666	654.9	654.8	10
	N - OSC3			.1			4 m wide p	0.3	0.15	0.4	1	0	8194682	656.3	656.2	10
	1N - PRE DE			.1			4 m wide p	0.3	0.15	0.4	10	0	8717466	666	665	10
	N - PRE DE			.1			4 m wide p	0.3	0.15	0.4	10	0	8717465	666	665	10
	N - PRE DE			.1			4 m wide p	0.3	0.15	0.4	10	0	8717471	665	664	10
	N - OSC2			.1			4 m wide p	0.3	0.15	0.4	2	0	8194692	656.8	656.6	10
OF - CW		A/3		.1			4 m wide p	0.3	0.15	0.4	4	0	25510162	656.6	656.2	10
Name		Dia (mm)														
B1-B2	uPVC, und			.5	0.29 Unsafe											
B2-A8	uPVC, und			.5	0.47 Unsafe	9										
A8-KIP	uPVC, und			.5	0.58											
RF1 - A1	uPVC, und			.5	0.31 Unsafe											
A1-A2	uPVC, und			.5	0.25 Unsafe											
A2-A3	uPVC, und			.5	0.45 Unsafe	9										
A3-A4	uPVC, und			.5	0.59											
A4-A5	uPVC, und			.5	0.79											
A5-A6	uPVC, und			.5	1.06											
A6-A7	uPVC, und			.5	0.87											
A7-A8	uPVC, und			.5	0.44 Unsafe	•										
RF2 - A2	uPVC, und			.5	0.51											
RF3 - A3 RF5 - A2	uPVC, und uPVC, und			.5 .5	0.71 0.51											
	uPVC, und			.5	0.51											
	uPVC, und uPVC, und			.5 .5	0.05 Unsafe 0.44 Unsafe											
	uPVC, und uPVC, und			.5	0.44 Unsafe											
r iheonap/	urvc, una	154	. 0		0.44 UIISate	=										

This model has no pipes with non-return valves

APPENDIX D – DRAINS OUTPUTS

1		red from Ve	ersion 2023	.11.8726.15	5750		
PIT / NODE	DETAILS			Version 8			
Name I	Max HGL	Max Pond	Max Surfac	Max Pond	Min	Overflow	Constraint
		HGL	Flow Arrivi		Freeboard	(cu.m/s)	
			(cu.m/s)	(cu.m)	(m)		
B/1	654.81		0.053		0		Outlet System
B/2	654.62		0.041		0		Outlet System
A/8	653.91		0.033		0.59	0.018	Inlet Capacity
EX KIP	652.83		0.032				
N - BYPASS N - PRE DE	654.01 666.02		0.007 0.137				
N - ROOF1	656.89		0.137				
A/1	656.25	656.33		2.9	0.05	0	Inlet Capacity
A/2	656.2	656.28		3.1	0.05		Inlet Capacity
A/3	656.08	656.23		0.9	0.12		Inlet Capacity
A/4	655.98	656.21	0.005	0.4	0.22		Inlet Capacity
A/6	655.79		0.011		0.41		Inlet Capacity
A/7	654.79		0		0.51		None
N - ROOF2	656.62		0.009				
N - ROOF3	656.39		0.022				
N - ROOF 5	656.63		0.014				
N - ROOF 6	656.16		0.006				
N - ROOF 7	657.07		0.033				
N - ROOF8	655.04		0.011				
N - OSC1	654.93		0.049				
N - OSC3	656.31		0.009				
N - PRE DE	666.01		0.049				
N - PRE DE	666.01		0.03				
N - PRE DE N - OSC2	665.03		0.209				
N - 03C2 C/1	656.81 656.08		0.018 0.018		0.52	0.008	Inlet Capacity
SUB-CATCH	IMENT DET	- A II C					
	IIVILINI DLI						
	Max		Grassed	Paved	Grassed	Supp.	Due to Storm
ı	Max Flow Q	Paved Max Q	Grassed Max Q	Paved Tc	Grassed Tc	Supp. Tc	Due to Storm
	Flow Q	Paved	Grassed Max Q (cu.m/s)				Due to Storm
	Flow Q	Paved Max Q	Max Q	Тс	Тс	Tc (min)	Due to Storm 10% AEP, 20 min burst, Storm 3
(C - B1 C - B2	Flow Q (cu.m/s)	Paved Max Q (cu.m/s)	Max Q (cu.m/s) 0.001	Tc (min)	Tc (min)	Tc (min)	
(C - B1	Flow Q (cu.m/s) 0.004	Paved Max Q (cu.m/s) 0.003	Max Q (cu.m/s) 0.001 0.001	Tc (min) 5 5 5	Tc (min) 7 7	Tc (min) 2	10% AEP, 20 min burst, Storm 3
C - B1 C - B2 C - A8 C - BYPASS	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006	Paved Max Q (cu.m/s) 0.003 0 0.001	Max Q (cu.m/s) 0.001 0.001 0.001 0.006	Tc (min) 5 5 5 5	Tc (min) 7 7 7	Tc (min) 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE ¹	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101	Paved Max Q (cu.m/s) 0.003 0 0.001 0	Max Q (cu.m/s) 0.001 0.001 0.001 0.006 0.039	Tc (min) 5 5 5 5 5 3.57	Tc (min) 7 7 7 7 6.15	Tc (min) 2 2 2 2 2 0	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0	Tc (min) 5 5 5 5 5 3.57 5	Tc (min) 7 7 7 7 6.15	Tc (min) 2 2 2 2 2 0 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009	Max Q (cu.m/s) 0.001 0.001 0.001 0.006 0.039 0.002	Tc (min) 5 5 5 5 5 3.57 5 5	Tc (min) 7 7 7 7 6.15 7	Tc (min) 2 2 2 2 2 0 0 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011	Paved Max Q (cu.m/s) 0.003 0.001 0.063 0.016 0.009	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0.002 0.002	Tc (min) 5 5 5 5 5 3.57 5 5 5 5	Tc (min) 7 7 7 7 6.15 7 7	Tc (min) 2 2 2 2 2 0 0 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE\ C - RF1 C - A1 C - A2 C - A3	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.011	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 7 6.15 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.001 0.006 0.001	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01 0.006 0.004	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 7 6.15 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.009 0.01 0.006 0.004 0.002	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0.002 0.002 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 7 6.15 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.006 0.004 0.002 0.002	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01 0.006 0.004 0.002 0.001	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0.002 0.002 0.002 0.002	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 20 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.006 0.004 0.002 0.002 0.002	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.009 0.01 0.006 0.004 0.002 0.001 0.007	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0.002 0.002 0.002 0.001 0.001 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 20 min burst, Storm 10 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF2	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.006 0.004 0.002 0.002 0.007 0.018	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01 0.006 0.004 0.002 0.001 0.007 0.018	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 15 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE\ C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01 0.006 0.004 0.002 0.001 0.007 0.018 0.011	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 15 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF5 C - RF6	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01 0.006 0.004 0.002 0.001 0.007 0.018 0.011 0.005	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 15 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF6 C - RF6	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005 0.026	Paved Max Q (cu.m/s) 0.003 0 0.001 0.016 0.009 0.01 0.002 0.001 0.007 0.018 0.011 0.005 0.026	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0.001 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF5 C - RF6 C - RF7 C - RF8	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005	Paved Max Q (cu.m/s) 0.003 0 0.001 0 0.063 0.016 0.009 0.01 0.006 0.004 0.002 0.001 0.007 0.018 0.011 0.005	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 15 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF5 C - RF7 C - RF7 C - RF8	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005 0.026 0.009	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.004 0.002 0.001 0.007 0.018 0.011 0.005 0.026 0.009	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF5 C - RF6 C - RF7 C - RF8 C - OSC1 C - OSC 3	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.011 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005 0.026 0.009 0.044	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.009 0.01 0.007 0.018 0.011 0.005 0.026 0.009 0	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 10.6	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF5 C - RF6 C - RF7 C - RF8 C - OSC1 C - OSC 3	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005 0.002 0.009 0.004 0.009	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.009 0.01 0.007 0.018 0.011 0.005 0.026 0.009 0 0.007	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Tc (min) 7 7 7 7 6.15 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF5 C - RF6 C - RF7 C - RF8 C - OSC1 C - OSC 3 C - PRE DE'	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005 0.026 0.009 0.044 0.007 0.043	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.009 0.01 0.007 0.018 0.011 0.005 0.026 0.009 0.007 0.018 0.001 0.005 0.026 0.009 0 0.007 0	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6	Tc (min) 7 7 7 7 6.15 7 7 7 7 7 7 7 7 7 10.6 7 10.89	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1
C - B1 C - B2 C - A8 C - BYPASS C - PRE DE' C - RF1 C - A1 C - A2 C - A3 C - A4 C - A5 C - A6 C - RF2 C - RF3 C - RF6 C - RF7 C - RF6 C - RF7 C - RF8 C - OSC1 C - OSC 3 C - PRE DE' C - PRE DE'	Flow Q (cu.m/s) 0.004 0.001 0.002 0.006 0.101 0.016 0.011 0.006 0.004 0.002 0.002 0.007 0.018 0.011 0.005 0.026 0.009 0.044 0.007 0.043 0.019	Paved Max Q (cu.m/s) 0.003 0 0.001 0.063 0.016 0.004 0.002 0.001 0.005 0.026 0.009 0 0.007 0.018 0.011 0.005 0.026 0.009 0 0.007 0 0 0 0 0 0 0	Max Q (cu.m/s) 0.001 0.001 0.006 0.039 0 0.002 0.002 0.001 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc (min) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6	Tc (min) 7 7 7 7 6.15 7 7 7 7 7 7 7 7 7 10.6 7 10.89 3.45	Tc (min) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 20 min burst, Storm 3 10% AEP, 15 min burst, Storm 7 10% AEP, 10 min burst, Storm 7 10% AEP, 5 min burst, Storm 1 10% AEP, 15 min burst, Storm 5 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 3 10% AEP, 15 min burst, Storm 4 10% AEP, 5 min burst, Storm 1 10% AEP, 5 min burst, Storm 1 10% AEP, 20 min burst, Storm 1 10% AEP, 5 min burst, Storm 1

Name	Max Q	Max V	Max U/S	Max D/S	Due to Storm
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)	
B1-B2	0.011	0.61	654.751	654.621	10% AEP, 20 min burst, Storm 1
B2-A8	0.023	1.25	654.451	653.913	10% AEP, 10 min burst, Storm 7
A8-KIP	0.12	5.28	653.87	652.907	10% AEP, 15 min burst, Storm 6
RF1 - A1	0.016	2.61	656.887	656.249	10% AEP, 5 min burst, Storm 1
A1-A2	0.021	0.46	656.229	656.204	10% AEP, 15 min burst, Storm 4
A2-A3	0.041	0.9	656.156	656.083	10% AEP, 15 min burst, Storm 4
A3-A4	0.063	0.87	656.023	655.98	10% AEP, 10 min burst, Storm 7
A4-A5	0.07	0.97	655.923	655.89	10% AEP, 10 min burst, Storm 7
A5-A6	0.065	1.41	655.864	655.79	10% AEP, 15 min burst, Storm 8
A6-A7	0.086	1.87	655.468	654.795	10% AEP, 15 min burst, Storm 6
A7-A8	0.086	1.95	654.753	654.032	10% AEP, 15 min burst, Storm 6
RF2 - A2	0.007	2.08	656.618	656.204	10% AEP, 5 min burst, Storm 1
RF3 - A3	0.018	2.66	656.389	656.083	10% AEP, 5 min burst, Storm 1
RF5 - A2	0.011	2.33	656.626	656.204	10% AEP, 5 min burst, Storm 1
RF6 - A4	0.005	1.85	656.161	655.98	10% AEP, 5 min burst, Storm 1
RF7 - A5	0.026	2.96	657.074	656.074	10% AEP, 5 min burst, Storm 1
RF8 - B2	0.009	2.17	655.041	654.621	10% AEP, 5 min burst, Storm 1
Pipe80567	0.006	0.57	656.08	655.89	10% AEP, 15 min burst, Storm 4

CHANNEL DETAILS

Name Max Q Max V (cu.m/s) (m/s)

Due to Storm

OVERFLOW ROUTE DETAILS

Name	Max Q U/S	Max Q D/S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Storm
OF - B1	0.034	0.034	0.703	0.035	0.02	4	0.44	10% AEP, 20 min burst, Storm 4
OF - B2	0.026	0.026	0.497	0.031	0.01	4	0.4	10% AEP, 20 min burst, Storm 4
OF - A8	0.018	0.018	0.908	0.017	0.02	1.73	1.18	10% AEP, 20 min burst, Storm 4
OF - POST	0.14	0.14	1.314	0.038	0.06	4	1.53	10% AEP, 15 min burst, Storm 5
OF - BYPAS	0.006	0.006	1.431	0.015	0.01	1.53	0.48	10% AEP, 15 min burst, Storm 7
OF -PD ON	0.101	0.101	1.355	0.033	0.05	4	1.41	10% AEP, 10 min burst, Storm 7
OF - A1	0	0	1.011	0	0	0	0	
OF - A2	0	0	1.023	0	0	0	0	
OF - A3	0	0	1.007	0	0	0	0	
OF - A4	0	0	1.09	0	0	0	0	
HIGH FLOV	0.059	0.059						10% AEP, 15 min burst, Storm 6
OF - A5	0	0	0.257	0	0	0	0	
OF - A6	0.004	0.003	1.409	0.013	0.01	1.33	3	10% AEP, 10 min burst, Storm 6
OF - OFC1	0.044	0.044	0.787	0.036	0.02	4	0.52	10% AEP, 20 min burst, Storm 10
OF - OSC3	0.007	0.007	0.908	0.022	0.01	4	0.26	10% AEP, 5 min burst, Storm 1
OF - PDOS:	0.043	0.043	1.355	0.025	0.03	4	1.06	10% AEP, 20 min burst, Storm 8
OF - PDOS	0.019	0.019	1.355	0.021	0.02	4	0.77	10% AEP, 10 min burst, Storm 7
OF - PRE D	0.151	0.151	1.355	0.038	0.06	4	1.64	10% AEP, 10 min burst, Storm 7
OF - OSC2	0.014	0.014	1.284	0.023	0.01	4	0.42	10% AEP, 10 min burst, Storm 7
OF - CW	0.008	0.008	1.412	0.016	0.01	1.63	0.57	10% AEP, 10 min burst, Storm 7

DETENTION BASIN DETAILS

 Name
 Max WL
 MaxVol
 Max Q
 Max Q
 Max Q

 Total
 Low Level
 High Level

 A5/OSD
 655.89
 15.8
 0.123
 0.065
 0.059

Run Log for DRAINS v2023.11.8726.15750 - 23309 - DRAINS

 $\colortbl;\red0\green0\blue0;\red192\green0\blue0;\Run\ Log\ for\ DRAINS\ v2023.11.8726.15750\ -\ 23309\ -\ DRAINS.drn\ run\ at\ 20:42:43.000\ -\ 20:40:400\ -\ 20:400\ -\$

No water upwelling from any pit.

Freeboard was less than 0.15m at B/2, B/1, A/3, A/2, A/1

Flows were safe in all overflow routes.

	DETAILS			Version 8			
lame	Max HGL		Max Surfac				Constraint
		HGL	Flow Arrivi		Freeboard	(cu.m/s)	
/1	654 05		(cu.m/s) 0.138	(cu.m)	(m)	0.007	Outlet System
/1 /2	654.85 654.67		0.138		0		Outlet System Outlet System
z 8	653.93		0.127		0.57		Inlet Capacity
ΊΡ	652.84		0.134		0.57	0.073	illet Capacity
BYPASS			0.145				
- BTFA33 - PRE DE	666.03		0.010				
ROOF1	656.9		0.032				
1	656.39	656.39		10.1	0	0	Outlet System
	656.37	656.36		12			Outlet System
3	656.3	656.3		5.4			Outlet System
	656.25	656.23					Outlet System
	656.19		0.028		0.01		Inlet Capacity
	654.98		0.020		0.32		None
ROOF2	656.63		0.014		5.52		
ROOF3	656.48		0.034				
ROOF 5	656.64		0.021				
ROOF 6	656.27		0.009				
ROOF 7	657.1		0.051				
ROOF8	655.05		0.016				
OSC1	654.95		0.128				
OSC3	656.31		0.014				
PRE DE	666.02		0.125				
- PRE DE	666.01		0.052				
PRE DE	665.05		0.441				
- OSC2	656.82		0.041				
	656.53		0.041		0.07	0.017	Inlet Capacity
	IMENT DET		Grassed	Dayod	Grasss -	Cups	Duo to Ctama
ne	Max	Paved	Grassed	Paved	Grassed	Supp.	Due to Storm
	Flow Q	Max Q	Max Q (cu.m/s)	Tc (min)	Tc (min)	Tc (min)	
D 1	(cu.m/s)	(cu.m/s)		(min) 5	. ,	. ,	1% AED 10
B1 B2	0.008	0.004					1% AEP, 10 min
A8	0.002	0 001		5	7 7		1% AEP, 10 min
	0.003	0.001		5			1% AEP, 10 min
BYPASS	0.012	0 004		5	7 5 22		1% AEP, 10 min
PRE DE'	0.189	0.094		3.03	5.23		1% AEP, 10 min
RF1	0.025	0.025		5	7		1% AEP, 10 min
A1 A2	0.016	0.014		5	7		1% AEP, 10 min
.2	0.018	0.013		5	7		1% AEP, 10 min
	0.01	0.009		5	7		1% AEP, 10 min
	0.006	0.006		5	7		1% AEP, 10 min
\5 \6	0.003	0.003		5	7		1% AEP, 10 min
46	0.003	0.002		5	7 7		1% AEP, 10 min
DEO	0.011	0.011					1% AEP, 10 min
	0.027	0.027					1% AEP, 10 min
RF3	0 017	0.017					1% AEP, 10 min
RF3 RF5	0.017	0.000	0				1% AEP, 10 min
RF3 RF5 RF6	0.008	0.008	^		7		1% AEP, 10 mi
RF3 RF5 RF6 RF7	0.008 0.041	0.041		5	-	~	
RF3 RF5 RF6 RF7 RF8	0.008 0.041 0.013	0.041 0.013	0	5			1% AEP, 10 min
RF3 RF5 RF6 RF7 RF8 OSC1	0.008 0.041 0.013 0.103	0.041 0.013 0	0 0.103	5 0	9.02	0	1% AEP, 15 mi
RF3 RF5 RF6 RF7 RF8 OSC1 OSC 3	0.008 0.041 0.013 0.103 0.011	0.041 0.013 0 0.011	0 0.103 0	5 0 5	9.02 7	0 2	1% AEP, 15 mi 1% AEP, 10 mi
- RF2 - RF3 - RF5 - RF6 - RF7 - RF8 - OSC1 - OSC 3	0.008 0.041 0.013 0.103 0.011 0.102	0.041 0.013 0 0.011	0 0.103 0 0.102	5 0 5 0	9.02 7 9.27	0 2 0	1% AEP, 15 mi 1% AEP, 10 mi 1% AEP, 15 mi
RF3 RF5 RF6 RF7 RF8 OSC1	0.008 0.041 0.013 0.103 0.011	0.041 0.013 0 0.011	0.103 0 0.102 0.039	5 0 5	9.02 7	0 2 0 0	1% AEP, 15 mi 1% AEP, 10 mi

Name	Max Q	ax Q Max V Max U,		Max D/S	Due to Storm	
	(cu.m/s)	(m/s)	HGL (m)	HGL (m)		
B1-B2	0.012	0.62	654.789	654.667	1% AEP, 5 min burst, Storm 1	
B2-A8	0.024	1.28	654.492	653.933	1% AEP, 5 min burst, Storm 1	
A8-KIP	0.139	5.44	653.882	652.917	1% AEP, 10 min burst, Storm 7	
RF1 - A1	0.025	2.92	656.903	656.393	1% AEP, 10 min burst, Storm 8	
A1-A2	0.026	0.57	656.382	656.367	1% AEP, 5 min burst, Storm 1	
A2-A3	0.054	1.18	656.342	656.304	1% AEP, 5 min burst, Storm 1	
A3-A4	0.087	1.2	656.271	656.246	1% AEP, 5 min burst, Storm 1	
A4-A5	0.096	1.34	656.222	656.208	1% AEP, 5 min burst, Storm 1	
A5-A6	0.066	1.43	656.204	656.192	1% AEP, 10 min burst, Storm 1	
A6-A7	0.095	2.07	655.799	654.979	1% AEP, 10 min burst, Storm 7	
A7-A8	0.095	2.12	654.929	654.039	1% AEP, 10 min burst, Storm 7	
RF2 - A2	0.011	2.35	656.627	656.367	1% AEP, 10 min burst, Storm 8	
RF3 - A3	0.027	1.49	656.476	656.304	1% AEP, 10 min burst, Storm 8	
RF5 - A2	0.017	2.63	656.638	656.367	1% AEP, 10 min burst, Storm 8	
RF6 - A4	0.008	0.44	656.268	656.246	1% AEP, 10 min burst, Storm 1	
RF7 - A5	0.041	3.27	657.098	656.208	1% AEP, 10 min burst, Storm 8	
RF8 - B2	0.013	2.46	655.051	654.667	1% AEP, 10 min burst, Storm 8	
Pipe80567	0.012	0.63	656.481	656.208	1% AEP, 10 min burst, Storm 4	

CHANNEL DETAILS

Name Max Q Max V (cu.m/s) (m/s)

Due to Storm

OVERFLOW ROUTE DETAILS

Name	Max Q U/S	Max Q D/S S	Safe Q	Max D	Max DxV	Max Width	Max V	Due to Storm
OF - B1	0.097	0.097	1.494	0.054	0.03	4	0.62	1% AEP, 15 min burst, Storm 8
OF - B2	0.091	0.091	1.519	0.053	0.03	4	0.61	1% AEP, 10 min burst, Storm 7
OF - A8	0.073	0.073	1.479	0.028	0.04	4	1.39	1% AEP, 10 min burst, Storm 7
OF - POST	0.23	0.23	1.314	0.046	0.09	4	1.86	1% AEP, 10 min burst, Storm 4
OF - BYPAS	0.012	0.012	1.431	0.022	0.01	4	0.43	1% AEP, 10 min burst, Storm 7
OF -PD ON	0.189	0.189	1.355	0.041	0.07	4	1.82	1% AEP, 10 min burst, Storm 7
OF - A1	0	0	1.463	0	0	0	0	l
OF - A2	0	0	1.464	0	0	0	0	l
OF - A3	0	0	1.473	0	0	0	0	l
OF - A4	0	0	1.472	0	0	0	0	l
HIGH FLOV	0.082	0.082						1% AEP, 10 min burst, Storm 4
OF - A5	0	0	0.853	0	0	0	0	l
OF - A6	0.007	0.007	1.409	0.016	0.02	1.63	2.94	1% AEP, 10 min burst, Storm 4
OF - OFC1	0.103	0.103	1.485	0.051	0.04	4	0.72	1% AEP, 15 min burst, Storm 8
OF - OSC3	0.011	0.011	1.479	0.024	0.01	4	0.3	1% AEP, 5 min burst, Storm 1
OF - PDOS:	0.102	0.102	1.355	0.033	0.05	4	1.42	1% AEP, 15 min burst, Storm 8
OF - PDOS	0.039	0.039	1.355	0.025	0.02	4	0.96	1% AEP, 5 min burst, Storm 1
OF - PRE D	0.318	0.318	1.355	0.051	0.11	4	2.22	1% AEP, 10 min burst, Storm 7
OF - OSC2	0.026	0.026	1.442	0.028	0.01	4	0.49	1% AEP, 10 min burst, Storm 7
OF - CW	0.017	0.017	1.412	0.023	0.01	4	0.51	1% AEP, 10 min burst, Storm 7

DETENTION BASIN DETAILS

Name Max WL MaxVol Max Q Max Q Max Q

Total Low Level High Level
A5/OSD 656.21 17.9 0.148 0.066 0.082

Run Log for DRAINS v2023.11.8726.15750 - 23309 - DRAINS

Upwelling occurred at: B/2, A/4, A/3, A/2, A/1 Freeboard was less than 0.15m at C/1, B/1, A/6 Flows were safe in all overflow routes.